Area of a triangle, \(A_T = \frac{1}{2} bh\) and \(A_T = \frac{1}{2} s^2 \sin 60\) for an equilateral triangle.
\(A_T = \frac{1}{2} bh\)
But \(b = s\) and \(h = s+ 3\)
So, \(A_T = 0.5 s(s+3) \)
\(A_T = \frac{1}{2} s^2 \sin 60\)
\(A_T = \frac{\sqrt{3}}{4}s^2 \)
Equate the two areas and simplify: \(\frac{\sqrt{3}}{4}s^2 = 0.5 s(s+3)\)
\(\frac{\sqrt{3}}{2}s = (s+3)\)
\(s (\frac{2-\sqrt{3}}{2}) = 3 \)
\(s = 12 + 6\sqrt{3}\)
\(s = 22.39 \) ft
Since the altitude forms a perpendicular line with the base, then new triangles are created. Since these triangles are right, use Pythagorean formula to calculate the side.
\( \sin 60 = \frac{s-3}{s}\)
\( s(\sin 60) = s-3\)
\( s(1-\sin 60) = 3 \)
\( s = \frac{3}{1-\sin 60} \)
\(s = 12 + 6\sqrt{3}\)
\(s = 22.39 \) ft