(a) Solve t in terms of s.
\(s = vt - 0.5gt^2\)
\(-\frac{-2s}{g} = \frac{-2vt}{g} + t^2\)
\(\frac{v^2}{g^2}-\frac{2s}{g} = t^2 - \frac{2vt}{g} + \frac{v^2}{g^2} \)
\(\frac{v^2 - 2sg}{g^2} = (t - \frac{v}{g})^2\)
\(\sqrt{\frac{v^2 - 2sg}{g^2}} = t- \frac{v}{g}\)
\(\frac{\sqrt{v^2-2sg}}{g} + \frac{v}{g}= t \)
\(\frac{v \pm \sqrt{v^2-2sg}}{g}= t \)
If \(v =300 \text{fps}\) solve \(t\) at \(s = 450\)
\(t = \frac{300 + \sqrt{300^2-2(450)(32)}}{32} \)
\(t = 17.11 \text{sec} \)
\(t = \frac{300 - \sqrt{300^2-2(450)(32)}}{32} \)
\(t = 1.64 \text{sec} \)
If \(v =300 \text{fps}\) solve \(t\) at \(s = 0\)
\(t = \frac{300 + \sqrt{300^2-2(0)(32)}}{32} \)
\(t = 18.75 \text{sec} \)
\(t = \frac{300 - \sqrt{300^2-2(0)(32)}}{32} \)
\(t = 0 \text{sec} \)