Subjects
×
  • ENSB Solutions
  • Basic Mathematics
  • Algebra
  • Trigonometry
  • Analytic Geometry
  • Plane Geometry
  • Solid Geometry
  • Differential Calculus
  • Integral Calculus
  • Differential Equation
  • Differential Calculus Solutions

    Topics || Problems

    Find the tangents to the curve \(y = \frac{1}{2} x^4 -x^3 +5x \) which makes an angle of \(45^o\) with the x-axis.
    tangent to the curve

    \(y = \frac{1}{2} x^4 -x^3 +5x \)

    \(\frac{dy}{dx} = 2x^3 -3x^2 +5\)

    The slopes of the tangent lines is \(m = \tan 45 = 1\) and \(m = \tan 135 = -1\)

    Find the points of tangency along the curve.

    \(\frac{dy}{dx} = 2x^3 -3x^2 +5 = 1\)

    \( x_1 \approx -0.9108200822\)

    \( x_2 \approx -1.0786168851 \)

    \(y\) values

    \(y_1 = \frac{1}{2} (-0.91)^4 -(-0.91)^3 +5(-0.91)\)

    \(y_1 = -3.45437778711\)

    \(y_2 = \frac{1}{2} (-1.08)^4 -(-1.08)^3 +5(-1.08)\)

    \(y_2 = -3.46143951026\)

    Thus the points of tangency are \((-0.91, -3.45) ~ and ~ (-1.08, -3.46)\)

    Find the first tangent.

    \(y--3.45 = 1 (x--0.91) \)

    \(y--3.45 = x+0.91 \)

    \(y = x -2.54\)

    The second tangent.

    \(y--3.46 =-1(x--1.08) \)

    \(y--3.46 = -x-1.08\)

    \(y = -x -4.54\)

    tangent to the curve