Subjects
×
  • ENSB Solutions
  • Basic Mathematics
  • Algebra
  • Trigonometry
  • Analytic Geometry
  • Plane Geometry
  • Solid Geometry
  • Differential Calculus
  • Integral Calculus
  • Differential Equation
  • Differential Calculus Solutions

    Topics || Problems

    Properties of limits

    Let f(x) and g(x) be functions of x. k, c and a be contants.

    1. If f(x) = c, then \(\mathop {\lim }\limits_{x \to a} f(x) = c\)

    Let \(\mathop {\lim }\limits_{x \to a} f(x) = A\) and \(\mathop {\lim }\limits_{x \to a} g(x) = B\) then;

    2. \(\mathop {\lim }\limits_{x \to a} kf(x) = k\mathop {\lim }\limits_{x \to a} f(x) =kA \)

    3. \(\mathop {\lim }\limits_{x \to a} \left[ {f(x) \pm g(x)} \right] = \mathop {\lim }\limits_{x \to a} \left[ {f(x)} \right] \pm \mathop {\lim }\limits_{x \to a} \left[ {g(x)} \right] = A \pm B\)

    4. \(\mathop {\lim }\limits_{x \to a} \left[ {f(x)g(x)} \right] = \left( {\mathop {\lim }\limits_{x \to a} f(x)} \right)\left( {\mathop {\lim }\limits_{x \to a} g(x)} \right) = AB\)

    5. \(\mathop {\lim }\limits_{x \to a} \frac{{f(x)}}{{g(x)}} = \frac{{\mathop {\lim }\limits_{x \to a} f(x)}}{{\mathop {\lim }\limits_{x \to a} g(x)}} = \frac{A}{B}\) , B is not equal 0.

    6. L' Hospital's Rule

    \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{f'\left( x \right)}}{{g'\left( x \right)}}\)

    7. \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\)

    How to calculate limits

    Sample calculations

    Calculate the limits of the following expressions.

    1. \(\mathop {\lim }\limits_{x \to 1} \frac{{({x^2} - 1)}}{{(x - 1)}}\)

    \(\mathop {\lim }\limits_{x \to 1} \frac{{({x^2} - 1)}}{{(x - 1)}} = \mathop {\lim }\limits_{x \to 1} \frac{{(x + 1)(x - 1)}}{{(x - 1)}}\)

    \(\mathop {\lim }\limits_{x \to 1} \frac{{({x^2} - 1)}}{{(x - 1)}} = \mathop {\lim }\limits_{x \to 1} (x + 1)\)

    \(\mathop {\lim }\limits_{x \to 1} \frac{{({x^2} - 1)}}{{(x - 1)}} = \left( {1 + 1} \right) = 2\)


    2. \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin \pi x}}{x}\)

    \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin \pi x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\sin \pi x}}{x}\left( {\frac{\pi }{\pi }} \right)\)

    \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin \pi x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\pi \sin \pi x}}{{\pi x}}\)

    \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin \pi x}}{x} = \left( \pi \right)\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin \pi x}}{{\pi x}}} \right)\)

    \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin \pi x}}{x} = \pi \left( 1 \right)\)

    \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin \pi x}}{x} = \pi \)


    3. \(\mathop {\lim }\limits_{\theta \to 0} \sqrt {1 - {{\sin }^2}\theta } \)

    \(\mathop {\lim }\limits_{\theta \to 0} \sqrt {1 - {{\sin }^2}\theta } = \sqrt {1 - \sin 0} \)

    \(\mathop {\lim }\limits_{\theta \to 0} \sqrt {1 - {{\sin }^2}\theta } = \sqrt 1 \)

    \(\mathop {\lim }\limits_{\theta \to 0} \sqrt {1 - {{\sin }^2}\theta } = \pm 1\)


    4. \(\mathop {\lim }\limits_{x \to \infty } \frac{{x + 16}}{{x - 16}}\)

    \(\mathop {\lim }\limits_{x \to \infty } \frac{{x + 16}}{{x - 16}} = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{x + 16}}{{x - 16}}} \right)\left( {\frac{{\frac{1}{x}}}{{\frac{1}{x}}}} \right)\)

    \(\mathop {\lim }\limits_{x \to \infty } \frac{{x + 16}}{{x - 16}} = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{1 + \frac{{16}}{x}}}{{1 - \frac{{16}}{x}}}} \right)\)

    \(\mathop {\lim }\limits_{x \to \infty } \frac{{x + 16}}{{x - 16}} = \left( {\frac{{1 + 0}}{{1 - 0}}} \right) = 1\)


    5. \(\mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}}\)

    \(\mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}} = \mathop {\lim }\limits_{\theta \to 0} \left( {\frac{{\sin \theta }}{{2\theta }}} \right)\) by L' Hospital's Rule

    \(\mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}} = \frac{1}{2}\mathop {\lim }\limits_{\theta \to 0} \left( {\frac{{\sin \theta }}{\theta }} \right)\)

    \(\mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}} = \frac{1}{2}\left( 1 \right)\)

    \(\mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}} = \frac{1}{2}\)


    Solving Derivatives Using Limit Definition

    \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \frac{{dy}}{{dx}} = f'(x)\)

    Examples: Find the first derivative of the given functions

    1. \(f(x) = y = {x^2} + 2x - 7\)

    \(f(x) = y = {x^2} + 2x - 7\)

    \(y + \Delta y = {\left( {x + \Delta x} \right)^2} + 2\left( {x + \Delta x} \right) - 7\)

    \(y + \Delta y = \left( {{x^2} + 2\Delta xx + \Delta {x^2}} \right) + 2\left( {x + \Delta x} \right) - 7\)

    \(\Delta y = {x^2} + 2x - 7 + 2\Delta xx + \Delta x + \Delta {x^2} - y\)

    \(\Delta y = {x^2} + 2x - 7 + 2\Delta xx + \Delta x + \Delta {x^2} - {x^2} - 2x + 7\)

    \(\frac{{\Delta y}}{{\Delta x}} = \frac{{2\Delta xx + \Delta x + \Delta {x^2}}}{{\Delta x}}\)

    \(\frac{{\Delta y}}{{\Delta x}} = 2x + 1 + \Delta x\)

    \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \frac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {2x + 1 + \Delta x} \right)\)

    \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \frac{{dy}}{{dx}} = 2x + 1\)


    2. \( y = {4x^2} - x - 1\)

    \(y = 4{x^2} - x - 1\)

    \(y + \Delta y = 4{\left( {x + \Delta x} \right)^2} - \left( {x + \Delta x} \right) - 1\)

    \(\Delta y = 4{\left( {x + \Delta x} \right)^2} - \left( {x + \Delta x} \right) - 1 - y\)

    \(\Delta y = 4\left( {{x^2} + 2x\Delta x + \Delta {x^2}} \right) - \left( {x + \Delta x} \right) - 1 - y\)

    \(\Delta y = \left( {4{x^2} + 8x\Delta x + 4\Delta {x^2}} \right) - \left( {x + \Delta x} \right) - 1 - \left( {4{x^2} - x - 1} \right)\)

    \(\Delta y = \left( {8x\Delta x + 4\Delta {x^2}} \right)\)

    \(\frac{{\Delta y}}{{\Delta x}} = \frac{{\left( {8x\Delta x + 4\Delta {x^2}} \right)}}{{\Delta x}}\)

    \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\left( {8x\Delta x + 4\Delta {x^2}} \right)}}{{\Delta x}} = \frac{{dy}}{{dx}}\)

    \(\frac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {8x + 4\Delta x} \right)\)

    \(\frac{{dy}}{{dx}} = 8x - 1\)