Subjects
×
  • ENSB Solutions
  • Basic Mathematics
  • Algebra
  • Trigonometry
  • Analytic Geometry
  • Plane Geometry
  • Solid Geometry
  • Differential Calculus
  • Integral Calculus
  • Differential Equation
  • Differential Calculus Solutions

    Topics || Problems

    Evaluate the limit: \( \lim_{x \to 1} (2-x)^{\tan {\frac{\pi x}{2}}} \)

    Let \( A = \lim_{x \to 1} (2-x)^{\tan {\frac{\pi x}{2}}}\)

    \( \ln {A} = \lim_{x \to 1} \ln {(2-x)^{\tan {\frac{\pi x}{2}}}} \)

    \( \ln {A} = \lim_{x \to 1} \ln {(2-x)} (\tan {\frac{\pi x}{2}}) \)

    \( \ln {A} = \lim_{x \to 1} \frac{ \ln {(2-x)}}{\cot {\frac{\pi x}{2}}} \)

    Apply L'Hospitals Rule

    \( \ln {A} = \lim_{x \to 1} \frac{\frac{1}{2-x}}{\frac{\pi}{2} \csc^{2} {\frac{\pi x}{2}}} \)

    \( \ln {A} = \frac{2}{\pi} \)

    \( A = e^{\frac{2}{\pi}} \)

    \( \lim_{x \to 1} (2-x)^{\tan {\frac{\pi x}{2}}} = e^{\frac{2}{ \pi}} \)