Subjects
×
  • ENSB Solutions
  • Basic Mathematics
  • Algebra
  • Trigonometry
  • Analytic Geometry
  • Plane Geometry
  • Solid Geometry
  • Differential Calculus
  • Integral Calculus
  • Differential Equation
  • Differential Calculus Solutions

    Topics || Problems

    Find the tangent and normal to the curve \(x^2 -2xy +2y^2 -x = 0\) at \(x=1\).
    graph of the curve

    At \(x=1\), \(y = 0\) and \(y = 1\)

    At \((1, 0)\)

    \(x^2 -2xy +2y^2 -x = 0\)

    \(2xdx - 2xdy - 2ydx + 4ydy -dx =0\)

    \(2(1)dx - 2(1)dy - 2(0)dx + 4(0)dy -dx =0\)

    \(2dx - 2dy -dx =0\)

    \(dx - 2dy =0\)

    \(\frac{dy}{dx} = \frac{1}{2}\)

    The tangent line; \(y-y_1 = \frac{1}{2}(x-x_1)\)

    \(y-0 = \frac{1}{2}(x-1)\)

    \(2y = x - 1\)

    The normal line: A normal line is a line perpendicular to the tangent line.

    \(y-0 = -2(x-1)\)

    \(y = -2x +2\)

    At \((1, 1)\)

    \(x^2 -2xy +2y^2 -x = 0\)

    \(2xdx - 2xdy - 2ydx + 4ydy -dx =0\)

    \(2(1)dx - 2(1)dy - 2(1)dx + 4(1)dy -dx =0\)

    \(-dx + 2dy =0\)

    \(\frac{dy}{dx} = \frac{1}{2}\)

    The tangent line; \(y-y_1 = \frac{1}{2}(x-x_1)\)

    \(y-1 = \frac{1}{2}(x-1)\)

    \(2y -2 = x - 1\)

    \(2y = x +1\)

    The normal line:

    \(y-1 = -2(x-1)\)

    \(y = -2x +3\)