At \(x=1\), \(y = 0\) and \(y = 1\)
At \((1, 0)\)
\(x^2 -2xy +2y^2 -x = 0\)
\(2xdx - 2xdy - 2ydx + 4ydy -dx =0\)
\(2(1)dx - 2(1)dy - 2(0)dx + 4(0)dy -dx =0\)
\(2dx - 2dy -dx =0\)
\(dx - 2dy =0\)
\(\frac{dy}{dx} = \frac{1}{2}\)
The tangent line; \(y-y_1 = \frac{1}{2}(x-x_1)\)
\(y-0 = \frac{1}{2}(x-1)\)
\(2y = x - 1\)
The normal line: A normal line is a line perpendicular to the tangent line.
\(y-0 = -2(x-1)\)
\(y = -2x +2\)
At \((1, 1)\)
\(x^2 -2xy +2y^2 -x = 0\)
\(2xdx - 2xdy - 2ydx + 4ydy -dx =0\)
\(2(1)dx - 2(1)dy - 2(1)dx + 4(1)dy -dx =0\)
\(-dx + 2dy =0\)
\(\frac{dy}{dx} = \frac{1}{2}\)
The tangent line; \(y-y_1 = \frac{1}{2}(x-x_1)\)
\(y-1 = \frac{1}{2}(x-1)\)
\(2y -2 = x - 1\)
\(2y = x +1\)
The normal line:
\(y-1 = -2(x-1)\)
\(y = -2x +3\)