Subjects
×
  • ENSB Solutions
  • Basic Mathematics
  • Algebra
  • Trigonometry
  • Analytic Geometry
  • Plane Geometry
  • Solid Geometry
  • Differential Calculus
  • Integral Calculus
  • Differential Equation
  • Differential Calculus Solutions

    Topics || Problems

    At what point does the curve \(y = \frac{x}{x+1}\), have the slope equal to 1/4?

    \(slope ~=~ \frac{dy}{dx} \)

    \(\frac{dy}{dx} = \frac{(x+1) - x}{(x+1)^2}\)

    \(\frac{dy}{dx} = \frac{1}{(x+1)^2}\)

    \(\frac{1}{4} = \frac{1}{(x+1)^2}\)

    \(\frac{1}{4}(x^2 +2x + 1 ) = 1\)

    \(x^2 +2x -3 = 0\)

    \(x_1 = \frac{-2+\sqrt{2^2 + 4(1)(3)}}{2(1)} \)

    \(x_1 = 1\)

    \(y_1 =\frac{1}{2} \)

    One point is at \((1, \frac{1}{2})\)

    \(x_2 = \frac{-2-\sqrt{2^2 + 4(1)(3)}}{2(1)} \)

    \(x_2=-3\)

    \(y_1 =\frac{-3}{-2} \)

    The second point is at \((-3, \frac{3}{2})\)