From Snell's Law \(\frac{sine ~ of ~angle ~ of~ incidence}{sine ~of~angle~of~refraction} \\= \frac{velocity~of~light~in~1^{st}~meduim}{velocity~of~ligth~in~2^{nd}~meduim}\)
The speed of light in air is approximately \(299,792 \frac{km}{sec}\).
Thus, \(\frac{\sin \theta_i}{\sin \theta_r} = \frac{299,792}{220, 400}\)
\( \frac{\sin \theta_i}{\sin 38} = \frac{299,792}{220, 400}\)
\(\theta^{-1} = \sin ((\sin 38 )(1.36))\)
\(\theta^{-1} = 56^o 52' \)