Height of the tower (CD)
\( \tan 50^o = \frac{CD}{AC}\)
\( AC = \frac{CD}{\tan 50^o}\)
\( \tan 22^o = \frac{CD}{CB}\)
\( CB = \frac{CD}{\tan 22^o}\)
\( (AC)^2 +(AB)^2 = (CB)^2 \)
\( (\frac{CD}{ \tan 50^o})^2 +(200)^2 = (\frac{CD}{\tan 22^o})^2 \)
\( 200^2 = 5.42197 CD^2\)
\(CD = 85.89 m\)