Synthetic Division is only applicable if in \(\frac{{P(x)}}{{g(x)}}\) g(x) is in the form x - c; where c is a constant.
\(\frac{{P(x)}}{{g(x)}}\) ==> P(x) = g(x) q(x) + R(x)
Where:
q(x) is the quotient
R(x) is the remainder
\(P(x) = {c_1}{x^n} + {c_2}{x^{n - 1}} + {c_3}{x^{n - 2}} + ...\)
\(q(x) = {b_1}{x^{n - 1}} + {b_2}{x^{n - 2}} + {b_3}{x^{n - 3}} + ...\)
So, to be able to find the quotient q(x), we just need to calculate the values of b's.
\(P(x) = q(x)g(x) + R(x) = (x - c)g(x) + R(x)\)
\( = (x - c)({b_1}{x^{n - 1}} + {b_2}{x^{n - 2}} + ...) + P(r)\)
\( = {b_1}x{x^{n - 1}} - c{b_1}{x^{n - 1}} + {b_2}x{x^{n - 2}} - c{b_2}{x^{n - 2}} + ... + {b_n}x - c{b_n} + P(r)\)
\( = {b_1}{x^n} - c{b_1}{x^{n - 1}} + {b_2}{x^{n - 1}} - c{b_2}{x^{n - 2}} + {b_3}{x^{n - 2}} + ... + - c{b_n} + P(r)\)
\( = {b_1}{x^n} + \left( { - c{b_1} + {b_2}} \right){x^{n - 1}} + \left( { - c{b_2} + {b_3}} \right){x^{n - 2}} + ... + \left( { - c{b_n} + P(r)} \right)\)
\(P(x) = {c_1}{x^n} + {c_2}{x^{n - 1}} + {c_3}{x^{n - 2}} + ...\)
\({c_1}{x^n} + {c_2}{x^{n - 1}} + {c_3}{x^{n - 2}} + ... = (x - c)g(x) + R(x)\)
\({c_1}{x^n} + {c_2}{x^{n - 1}} + {c_3}{x^{n - 2}} + ... = {b_1}{x^n} + \left( { - c{b_1} + {b_2}} \right){x^{n - 1}} + \left( { - c{b_2} + {b_3}} \right){x^{n - 2}} + ... + \left( { - c{b_n} + P(r)} \right)\)
By equating coefficients of equal exponents.
\({c_1} = {b_1}\)
\({c_2} = {b_2} - c{b_1}\)
\({c_3} = {b_3} - c{b_2}\)
:\({c_n} = P(r) - c{b_n}\)
Then we solve the value of b's.
\({b_1} = {c_1}\)
\({b_2} = {c_2} + c{b_1}\)
\({b_3} = {c_3} + c{b_2}\)
:\(P(r) = {c_n} + c{b_n}\)
Maybe in this form it's a lot harder to see that this is a simplified form of polynomial division. But if arranged in a table form it would be easier. See the table below.
c | \({x^n}\) | \({x^{n - 1}}\) | \({x^{n - 2}}\) | ... | \({c_n}\) |
---|---|---|---|---|---|
\({c_1}\) | \({c_2}\) | \({c_3}\) | ... | \({c_n}\) | |
\({c_1}\) | \({c_2} + c{b_1}\) | \({c_3} + c{b_2}\) | ... | \({c_n} + c{b_n}\) | |
\({b_1}\) | \({b_2}\) | \({b_3}\) | ... | \(P(r)\) |