Subjects
×
  • ENSB Solutions
  • Basic Mathematics
  • Algebra
  • Trigonometry
  • Analytic Geometry
  • Plane Geometry
  • Solid Geometry
  • Differential Calculus
  • Integral Calculus
  • Differential Equation
  • Algebra Solutions

    Topics || Problems

    Derivation of Synthetic Division

    Synthetic Division is only applicable if in \(\frac{{P(x)}}{{g(x)}}\) g(x) is in the form x - c; where c is a constant.

    \(\frac{{P(x)}}{{g(x)}}\) ==> P(x) = g(x) q(x) + R(x)

    Where:

    q(x) is the quotient

    R(x) is the remainder

    \(P(x) = {c_1}{x^n} + {c_2}{x^{n - 1}} + {c_3}{x^{n - 2}} + ...\)

    \(q(x) = {b_1}{x^{n - 1}} + {b_2}{x^{n - 2}} + {b_3}{x^{n - 3}} + ...\)

    So, to be able to find the quotient q(x), we just need to calculate the values of b's.



    \(P(x) = q(x)g(x) + R(x) = (x - c)g(x) + R(x)\)

    \( = (x - c)({b_1}{x^{n - 1}} + {b_2}{x^{n - 2}} + ...) + P(r)\)

    \( = {b_1}x{x^{n - 1}} - c{b_1}{x^{n - 1}} + {b_2}x{x^{n - 2}} - c{b_2}{x^{n - 2}} + ... + {b_n}x - c{b_n} + P(r)\)

    \( = {b_1}{x^n} - c{b_1}{x^{n - 1}} + {b_2}{x^{n - 1}} - c{b_2}{x^{n - 2}} + {b_3}{x^{n - 2}} + ... + - c{b_n} + P(r)\)

    \( = {b_1}{x^n} + \left( { - c{b_1} + {b_2}} \right){x^{n - 1}} + \left( { - c{b_2} + {b_3}} \right){x^{n - 2}} + ... + \left( { - c{b_n} + P(r)} \right)\)

    \(P(x) = {c_1}{x^n} + {c_2}{x^{n - 1}} + {c_3}{x^{n - 2}} + ...\)

    \({c_1}{x^n} + {c_2}{x^{n - 1}} + {c_3}{x^{n - 2}} + ... = (x - c)g(x) + R(x)\)

    \({c_1}{x^n} + {c_2}{x^{n - 1}} + {c_3}{x^{n - 2}} + ... = {b_1}{x^n} + \left( { - c{b_1} + {b_2}} \right){x^{n - 1}} + \left( { - c{b_2} + {b_3}} \right){x^{n - 2}} + ... + \left( { - c{b_n} + P(r)} \right)\)

    By equating coefficients of equal exponents.

    \({c_1} = {b_1}\)

    \({c_2} = {b_2} - c{b_1}\)

    \({c_3} = {b_3} - c{b_2}\)

    :
    .

    \({c_n} = P(r) - c{b_n}\)

    Then we solve the value of b's.

    \({b_1} = {c_1}\)

    \({b_2} = {c_2} + c{b_1}\)

    \({b_3} = {c_3} + c{b_2}\)

    :
    .

    \(P(r) = {c_n} + c{b_n}\)

    Maybe in this form it's a lot harder to see that this is a simplified form of polynomial division. But if arranged in a table form it would be easier. See the table below.

    c \({x^n}\) \({x^{n - 1}}\) \({x^{n - 2}}\) ... \({c_n}\)
    \({c_1}\) \({c_2}\) \({c_3}\) ... \({c_n}\)
    \({c_1}\) \({c_2} + c{b_1}\) \({c_3} + c{b_2}\) ... \({c_n} + c{b_n}\)
    \({b_1}\) \({b_2}\) \({b_3}\) ... \(P(r)\)