Representations | |
---|---|
Symbols | Meaning |
\(L\) | Length of the rectangle |
\(W\) | Width of the rectangle |
\(L_n\) | New length of the rectangle |
\(W_n\) | New width of the rectangle |
\(L_n= L+5\)
\(L = L_n -5\)
\(W_n= W+3\)
\(W = W_n -3\)
\(W_n= \frac{3}{5} L_n\)
\(W = \frac{3}{5} L_n -3\)
\(A_n= A+135\)
\(L_n W_n= LW+135\)
\(L_n ( \frac{3}{5} L_n)= LW+135\)
\(\frac{3}{5} L_n ^2= ( L_n -5)(\frac{3}{5}L_n -3)+135\)
\(\frac{3}{5} L_n ^2= \frac{3}{5}L_n^2-3L_n -3L_n + 15)+135\)
\(L_n = 25\)
\(L = 25-5 = 20\)
\(L = \frac{3}{5}(25)-3 = 12\)
Thus the original dimensions is: 12x20 \text{feet}