Solution:
Let \(b\) be the base and \(a\) be the altitude of the triangle.
\(b = a- 4 \)
\(A_t = 126\)
\(A_t = \frac{1}{2}ba\)
\(126 = \frac{1}{2}ba\)
\(a = \frac{252}{b}\)
\(b = \frac{252}{b} -4\)
\(b^2 = 252 - 4b \)
\(b^2+4b- 252=0 \)
\((b-14)(b+18) = 0\)
\(b = 14\)
\(a = 14+4 = 18\)
Thus, the base of the triangle is 14 feet and the altitude is 18 feet