Subjects
×
  • ENSB Solutions
  • Basic Mathematics
  • Algebra
  • Trigonometry
  • Analytic Geometry
  • Plane Geometry
  • Solid Geometry
  • Differential Calculus
  • Integral Calculus
  • Differential Equation
  • Analytic Geometry Solutions

    Topics || Problems

    Find the equation of the parabola with axis parallel to 0x and passing through (5, 4) (11, -2),(21, -4,).

    Since the parabola is parallel to 0x, the curve must be opening to either left or right.

    To find the equation using the given points;

    • Create equations - \((y-k)^2 = 4a(x-h)\)
    • Find the values of a, h and k

    Create Equations

    • \((4-k)^2 =4a(5-h) \), points\((5,4)\)
    • \((-2-k)^2 =4a(11-h) \), points\((11,-2)\)
    • \((-4-k)^2 =4a(21-h) \), points\((21,-4)\)

    Use the equations to calculate \(a, h ~and ~ k\)

    \((4-k)^2 =4a(5-h) \)

    \(16 - 8k + k^2 = 20a -4ah\) \(eq. ~1\)

    \((-2-k)^2 =4a(11-h) \)

    \(4 +4k + k^2 = 44a -4ah\) \(eq. ~2\)

    \((-4-k)^2 =4a(21-h) \)

    \(16+8k + k^2 = 84a -4ah\) \(eq. ~3\)

    Remove \(h\) using equations \(1 \) and \(2\)

    \begin{align}(16 - 8k + k^2)-(4 +4k + k^2) \\= (20a -4ah)-(44a -4ah)\end{align}

    \(12-12k = -24a\) \(eq.~4\)

    Remove \(h\) using equations \(2 \) and \(3\)

    \begin{align}(4 +4k + k^2) - (16+8k + k^2 ) \\= (44a -4ah) - (84a -4ah)\end{align}

    \(-12 - 4k = -40a\) \(eq.~5\)

    Find \(k ~ and ~ a\) using equations \(5~ and ~4\)

    \(12-12k = -24a)\) \(eq.~4\)

    \(36 + 12k = 120a~~\) \(eq.~5\) multiplied by \(-3\)

    \(48 = 96a\)

    \(a = \frac{1}{2}\)

    Solve \(k\)

    \(12-12k = -24 \frac{1}{2}\)

    \(k=2\)

    Use any equations \((1-3)\) to solve \(h\).

    \((4-2)^2 = 4(0.5)(5-h)\)

    \(h = 3\)

    The equation:

    \((y-2)^2 = 2(x-3)\) Answer

    It can also be written in general form.

    \(y^2-4y + 4 = 2x-6\)

    \(y^2-4y-2x+10=0\) Answer