Subjects
×
  • ENSB Solutions
  • Basic Mathematics
  • Algebra
  • Trigonometry
  • Analytic Geometry
  • Plane Geometry
  • Solid Geometry
  • Differential Calculus
  • Integral Calculus
  • Differential Equation
  • Integral Calculus Solutions

    Topics || Problems

    Find the area enclosed by r = 2a Cos θ

    Solution:

    Differential Area

    \(dA = \frac{1}{2}{r^2}d\theta \)

    \(dA = \frac{1}{2}{\left( {2aCos\theta } \right)^2}d\theta \)

    Limits:

    Let \(r = 0\)

    \(\cos \theta = 0\)

    \(\theta = \frac{\pi }{2},\frac{{3\pi }}{2}\)

    Since it's symmetrical along the x axis. The limits can also be from 0 to \(\frac{\pi }{2}\) and multiply the area twice.

    Thus:

    \(A = \frac{1}{2}\int\limits_{\frac{{ - \pi }}{2}}^{\frac{\pi }{2}} {4{a^2}{{\cos }^2}\theta d\theta } \)

    \(A = 2{a^2}\int\limits_{\frac{{ - \pi }}{2}}^{\frac{\pi }{2}} {{{\cos }^2}\theta d\theta } \)

    \({\cos ^2}\theta d\theta = \frac{1}{2}\left( {1 + \cos 2\theta } \right)\)

    \(A = 2{a^2}\int\limits_{\frac{{ - \pi }}{2}}^{\frac{\pi }{2}} {\frac{1}{2}\left( {1 + \cos 2\theta } \right)d\theta } \)

    \(A = {a^2}\left[ {\theta + \frac{1}{2}\sin 2\theta } \right]_{\frac{{ - \pi }}{2}}^{\frac{\pi }{2}}\)

    \(A = {a^2}\left[ {\left( {\frac{\pi }{2} + 0} \right) - \left( {\frac{{ - \pi }}{2} + 0} \right)} \right]\)

    \(A = \pi {a^2}\) square unitsAnswer