Subjects
×
  • ENSB Solutions
  • Basic Mathematics
  • Algebra
  • Trigonometry
  • Analytic Geometry
  • Plane Geometry
  • Solid Geometry
  • Differential Calculus
  • Integral Calculus
  • Differential Equation
  • Differential Equation Solutions

    Topics || Problems

    Obtain the general solution of \((1-x)y' = y^2\).

    \((1-x)y' = y^2\) =\((1-x)\frac{dy}{dx} = y^2\)

    \((1-x)dy = y^2 dx\)

    \( \frac{(dx)}{(1-x)} = \frac{dy}{y^2}\)

    \( \int{\frac{(dx)}{(1-x)} }= \int{\frac{dy}{y^2}}\)

    \( -ln(1-x) - lnc = \frac{-1}{y}\)

    \( (1-x) c=\frac{1}{y}\)

    \( y(1-x) c=1\)