Solve the equation \( (x + 2y)dx + (2x +y ) dy = 0\)
Test for exactness:
\( \frac{ \partial M}{ \partial x } = 2\) and \( \frac{ \partial N}{ \partial y } = 2\), thus exact equation
\( \frac{ \partial F}{ \partial x} = M = x + 2y\)
\( \frac{ \partial F}{ \partial y} = N = 2x + y \)
\( F = \frac{x^2}{2} +2xy + p(y) \)
\( \frac{\partial F}{ \partial y } = 2x + p'(y) \)
\( \frac{\partial F}{ \partial y } = 2x + p'(y) = 2x + y\)
\( p'(y) = y\)
\( p(y) = \frac{y^2}{2} \)
\(F = \frac{x^2}{2} +2xy + \frac{y^2}{2} \)
\( c = x^2 + 4xy + y^2 \)