Show that \(\tan \theta + \cot \theta = \sec \theta \csc \theta \)
Solution
\(\begin{array}{l}\tan \theta + \cot \theta = \sec \theta \csc \theta
\\\\\frac{{\sin \theta }}{{\cos \theta }} + \frac{{\cos \theta }}{{\sin \theta }} =
\sec \theta \csc \theta
\\\\\frac{{{{\sin }^2}\theta + {{\cos }^2}\theta }}{{\cos \theta \sin \theta }} = \sec \theta \csc \theta
\\\\\frac{1}{{\cos \theta \sin \theta }} = \sec \theta \csc \theta
\\\\\left( {\frac{1}{{\cos \theta }}} \right)\left( {\frac{1}{{\sin \theta }}}\right) = \sec \theta \csc \theta
\\\\sec \theta \csc \theta = \sec \theta \csc \theta
\end{array}\)