The area of the regular pentagon can be calculated throught the formula \(A_p =5 \frac{1}{2} b~r_i\) and \(A_p = 5 \frac{1}{2} \sin 72^o r_{c}^{2} \)
\(560 = 5\frac{1}{2} \sin 72^o r_c^2\)
\(r_c = \sqrt{\frac{560x2}{5\sin 72^o}}\)
\(r_c = 15.35~ft\)
Solve the value of \(b\)
\(\cos 54 = \frac{\frac{b}{2}}{r_c}\)
\(b = 2(15.35)(\cos 54)\)
\(b = 18.041 ~ft\)
Solve \(r_i\)
\(560 = 5 \frac{1}{2} (18.041)r_i\)
\(r_i = \frac{560x2}{5x18.041 }\)
\(r_i = 12.42~ft\)